


One- and Three-Letter Symbols for the Amino Acidsa

A Ala Alanine

B Asx Asparagine or aspartic acid

C Cys Cysteine

D Asp Aspartic acid

E Glu Glutamic acid

F Phe Phenylalanine

G Gly Glycine

H His Histidine

I Ile Isoleucine

K Lys Lysine

L Leu Leucine

M Met Methionine

N Asn Asparagine

P Pro Proline

Q Gln Glutamine

R Arg Arginine

S Ser Serine

T Thr Threonine

V Val Valine

W Trp Tryptophan

Y Tyr Tyrosine

Z Glx Glutamine or glutamic acid

aThe one-letter symbol for an undetermined or nonstandard amino acid is X.

Thermodynamic Constants and Conversion Factors
Joule (J)
 1 J = 1 kg⋅m2⋅s−2 1 J = 1 C⋅V (coulomb volt)

 1 J = 1 N⋅m (newton meter)

Calorie (cal)
 1 cal heats 1 g of H2O from 14.5 to 15.5°C

 1 cal = 4.184 J

Large calorie (Cal)
 1 Cal = 1 kcal 1 Cal = 4184 J

Avogadro’s number (N)

 N = 6.0221 × 1023 molecules⋅mol−1

Coulomb (C)
1 C = 6.241 × 1018 electron charges

Faraday (�)
 1 ℱ = N electron charges

 1 ℱ = 96,485 C⋅mol−1 = 96,485 J⋅V−1⋅mol−1

Kelvin temperature scale (K)
 0 K = absolute zero 273.15 K = 0°C

Boltzmann constant (kB)

 kB = 1.3807 × 10−23 J⋅K−1

Gas constant (R)

 R = NkB R = 1.9872 cal⋅K−1⋅mol−1

 R = 8.3145 J⋅K−1⋅mol−1 R = 0.08206 L⋅atm⋅K−1⋅mol−1

The Standard Genetic Code
First

Position
(5′ end)

Second
Position

Third
Position
(3′ end)

U

U C A G

UUU  Phe UCU  Ser UAU  Tyr UGU  Cys U

UUC  Phe UCC  Ser UAC  Tyr UGC  Cys C

UUA  Leu UCA  Ser UAA  Stop UGA  Stop A

UUG  Leu UCG  Ser UAG  Stop UGG  Trp G

C

CUU  Leu CCU  Pro CAU  His CGU  Arg U

CUC  Leu CCC  Pro CAC  His CGC  Arg C

CUA  Leu CCA  Pro CAA  Gln CGA  Arg A

CUG  Leu CCG  Pro CAG  Gln CGG  Arg G

A

AUU  Ile ACU  Thr AAU  Asn AGU  Ser U

AUC  Ile ACC  Thr AAC  Asn AGC  Ser C

AUA  Ile ACA  Thr AAA  Lys AGA  Arg A

AUG  Meta ACG  Thr AAG  Lys AGG  Arg G

G

GUU  Val GCU  Ala GAU  Asp GGU  Gly U

GUC  Val GCC  Ala GAC  Asp GGC  Gly C

GUA  Val GCA  Ala GAA  Glu GGA  Gly A

GUG  Val GCG  Ala GAG  Glu GGG  Gly G
aAUG forms part of the initiation signal as well as coding for internal Met residues.
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 Rachel Milner and Adrienne Wright, University of  Alberta, 

which can be sorted by chapter and/or topic and can be 

assigned as graded homework or additional practice. 

Practice Questions: Quizzes, by Steven Vik, Southern 

Methodist University, to accompany each chapter, con-

sisting of multiple-choice, true/false, and f ll-in-the-

blank questions, with instant feedback to help students 

master concepts.

Prelecture Questions: Multiple-choice questions that can 

be assigned prior to lecture to help students prepare for 

class.

Discussion Questions: Embedded within the WileyPLUS 

Learning Space etext, these thought-provoking questions 

serve as a point of departure for student discussion and 

engagement with the content.

Access instructors’ resources
PowerPoint Slides contain all images and tables in the text, 

optimized for viewing onscreen.

Interactive Protein PowerPoints contain text images of a wide 

variety of proteins. Each slide includes a molecular structure 

and PDB code from the text that links students and instruc-

tors to the specif c protein in the Protein Data Bank website 

(http://www.rcsb.org/pdb/home/home.do) The website pro-

vides a host of information about the 3D structures of large 

biological molecules, including proteins and nucleic acids.

Classroom Response Questions (“Clicker Questions”), 
by Rachel Milner and Adrienne Wright, University of 

Alberta, are interactive questions designed for  classroom 

response systems to facilitate classroom participation and 

discussion. These questions can also be used by instruc-

tors as prelecture questions that help gauge  students’ 

knowledge of overall concepts, while addressing common 

misconceptions.
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P R E F A C E

Biochemistry is no longer a specialty subject but is part of the core of 

knowledge for modern biologists and chemists. In addition, familiar-

ity with biochemical principles has become an increasingly valuable 

component of medical education. In revising this textbook, we asked, 

“Can we provide students with a solid foundation in biochemistry, along 
with the problem-solving skills to use what they know? We concluded 

that it is more important than ever to meet the expectations of a stan-

dard biochemistry curriculum, to connect biological chemistry to its 

chemical roots, and to explore the ways that biochemistry can explain 

human health and disease. We also wanted to provide students with op-

portunities to develop the practical skills that they will need to meet the 

scientifi c and clinical challenges of the future. This revised version of 

Fundamentals of Biochemistry continues to focus on basic principles 

while taking advantage of new tools for fostering student understanding. 

Because we believe that students learn through constant questioning, 

this edition features expanded problem sets, additional questions within 

the text, and extensive online resources for assessment. As in previous 

editions, we have strived to provide our students with a textbook that is 

complete, clearly written, and relevant.

New for the Fifth Edition
The fi fth edition of Fundamentals of Biochemistry includes signifi cant 

changes and updates to the contents. In recognition of the tremendous 

advances in biochemistry, we have added new information about prion 

diseases, trans fats, membrane transporters, signal transduction path-

ways, mitochondrial respiratory complexes, photosynthesis, nitrogen 

fi xation, nucleotide synthesis, chromatin structure, and the machinery of 

DNA replication, transcription, and protein synthesis. New experimen-

tal approaches for studying complex systems are introduced, including 

next generation DNA sequencing techniques, cryo-electron microscopy, 

metabolomics, genome editing with the CRISPR–Cas9 system, and the 

role of noncoding RNAs in gene regulation. Notes on a variety of human 

diseases and pharmacological eff ectors have been expanded to refl ect 

recent research fi ndings.

Pedagogy
As in the previous four editions of Fundamentals of Biochemistry, we 

have given signifi cant thought to the pedagogy within the text and have 

concentrated on fi ne-tuning and adding new elements to promote stu-

dent learning. Pedagogical  enhancements in this fi fth edition include 

the following:

•  Gateway Concepts. Short statements placed in the margin to summa-

rize some of the general concepts that underpin modern biochemistry, 

such as Evolution, Macromolecular Structure/Function, Matter/Ener-

gy Transformation, and Homeostasis. These reminders help students 

develop a richer understanding as they place new information in the 

context of what they have encountered in other coursework.

•  Sample Calculation Videos within WileyPLUS Learning Space. 
Students come to biochemistry with diff erent levels of math skills. 

These embedded videos, created by Charlotte Pratt, walk students 

through the Sample Calculations provided for key equations through-

out the text.

•  Animated Process Diagrams in WileyPLUS Learning Space. The 

many Process Diagrams in the text have each been broken down into 

discrete steps that students can navigate at their desired pace.

•  Brief Bioinformatics Exercises in WileyPLUS Learning Space. 
A series of 74 short, assessable, and content-specifi c bioinformat-

ics projects (at least two per chapter) by Rakesh Mogul, Cal Poly 

Pomona. They introduce students to the rich variety of biochemi-

cal information available over the Internet and show them how to 

mine this information, thereby illuminating the connections between 

theory and applied biochemistry and stimulating student interest and 

profi ciency in the subject.

•  Focus on evolution. An evolutionary tree icon marks passages in 

the text that illuminate examples of evolution at the biochemical level.

•  Reorganized and Expanded Problem Sets. End-of-chapter prob-

lems are now divided into two categories so that students and instruc-

tors can better assess lower- and higher-order engagement: Exercises 

allow students to check their basic understanding of concepts and ap-

ply them in straightforward problem solving. Challenge Questions 

require more advanced skills and/or the ability to make connections 

between topics. The fi fth edition contains nearly 1000 problems, an 

increase of 26% over the previous edition. Most of the problems are 

arranged as successive pairs that address the same or related topics. 

Complete solutions to the odd-numbered problems are included in an 

appendix for quick feedback. (www.wiley.com/college/voet). Com-

plete solutions to both odd- and even-numbered problems are available 

in the Student Companion to  Accompany Fundamentals of Biochem-
istry, Fifth Edition.

Artwork
Students’ ability to understand and interpret biochemical diagrams, 

 illustrations, and processes plays a signifi cant role in their understand-

ing both the big picture and details of biochemistry. In addition to de-

signing new illustrations and redesigning existing fi gures to enhance 

clarity, we have continued to address the needs of visual learners by 

usingseveral unique features to help students use the visuals in concert 

with the text:

•  Figure Questions. To further underscore the importance of stu-

dents’ ability to interpret various images and data, we have added 

questions at the ends of fi gure captions that encourage students to 

more fully engage the material and test their understanding of the 

process being illustrated.

GATEWAY CONCEPT Free Energy Change
You can think of the free energy change (ΔG) for a reaction in terms of 

an urge or a force pushing the reactants toward equilibrium. The larger 

the free energy change, the farther the reaction is from equilibrium and 

the stronger is the tendency for the reaction to proceed. At equilibrium, 

of course, the reactants undergo no net change and ΔG = 0.

GATEWAY CONCEPT The Steady State
Although many reactions are near equilibrium, an entire metabolic 

pathway—and the cell’s metabolism as a whole—never reaches equi-

librium. This is because materials and energy are constantly entering 

and leaving the system, which is in a steady state. Metabolic pathways 

proceed, as if trying to reach equilibrium (Le Châtelier’s principle), 

but they cannot get there because new reactants keep arriving and 

products do not accumulate.
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•  Process Diagrams. These visually distinct illustrations highlight im-

portant biochemical processes and integrate descriptive text into the 

fi gure, appealing to visual learners. By following information in the 

form of a story, students are more likely to grasp the key principles and 

less likely to simply memorize random details.

•  Molecular Graphics. Numerous fi gures have been replaced with 

state-of-the-art molecular graphics. The new fi gures are more de-

tailed, clearer, and easier to interpret, and in many cases, refl ect 

recent refi nements in molecular visualization technology that have 

led to higher-resolution macromolecular models or have revealed 

new mechanistic features.

•  PDB identif cation codes in the fi gure legend for each molecular 

structure so that students can easily access the structures online and 

 explore them on their own.

•  Reviews of chemical principles that underlie biochemical phenom-

ena, including thermodynamics and equilibria, chemical kinetics, and 

oxidation–reduction reactions. 

•  Sample calculations that demonstrate how students can apply key 

equations to real data.

SAMPLE CALCULATION 10-1

Show that ΔG < 0 when Ca2+ ions move from the endoplas-

mic reticulum (where [Ca2+] = 1 mM) to the cytosol (where 

[Ca2+] = 0.1 μM). Assume ΔΨ = 0.

The cytosol is in and the endoplasmic reticulum is out.

 ΔG = RT ln 

[Ca2+ ] in

[Ca2+ ] out
= RT ln 

10−7

10−3

 = RT(−9.2)

Hence, ΔG is negative.

 See Sample Calculation Videos.

Reaction coordinate

G

A + B

A + B P + Q
P + Q

Catalyzed

Uncatalyzed

X‡

ΔΔGcat

ΔG
(the reduction
in         by the
catalyst)

‡

‡

FIG. 11-7 Effect of a catalyst on the transition state diagram of a 
reaction. Here ΔΔG‡

cat = ΔG‡(uncat)−ΔG‡(cat).  

Does the catalyst affect ΔGreaction??

FIG. 28-37 A mechanism of RNA interference. ATP is required for 

Dicer-catalyzed cleavage of RNA and for RISC-associated helicase unwinding 

of double-stranded RNA. Depending on the species, the mRNA may not be 

completely degraded.               See the Animated Process Diagrams.

PROCESS DIAGRAM   

1 Dicer cleaves 
dsRNA into siRNA.

2
RNA-induced silencing complex 
(RISC) binds to the siRNA and 
separates its strands.

3 The siRNA binds to a 
complementary mRNA.

Trigger dsRNA

siRNA

RISC

p
p 3′

3′

RISC

4 RISC cleaves the mRNA so that 
it cannot be translated.

Target mRNA

p

p

p 3′
3′ p

p 3′ 
3′

RISC

p
mRNA

Cleaved mRNA

+

Explain why RNAi is a mechanism for “silencing” genes.?

•  Media Assets. WileyPLUS Learning Space plays a key role in stu-

dents’ ability to understand and manipulate structural images.  Guided 

Explorations, Animated Figures, and Animated Process Diagrams 

employ extensive animations and three-dimensional structures so that 

students can interact with the materials at their own pace, making 

them ideal for independent study.

Traditional Pedagogical Strengths
Successful pedagogical elements from prior editions of Fundamentals of 
Biochemistry have been retained. Among these are:

•  Key concepts at the beginning of each section that prompt students to 

recognize the important “takeaways” or concepts in each section, providing 

the scaff olding for understanding by better defi ning these important points.

•  Checkpoint questions, a robust set of study questions that appear at 

the end of every section for students to check their mastery of the sec-

tion’s key concepts. Separate answers are not provided, encouraging 

students to look back over the chapter to reinforce their understanding, 

a process that helps develop confi dence and student-centered learning.

• Key sentences printed in italics to assist with quick visual  identifi cation.

• Overview f gures for many metabolic processes.

• Detailed enzyme mechanism f gures throughout the text. 

FIG. 13-4 X-Ray structure of the insulin receptor ectodomain. One of its αβ 

protomers is shown in ribbon form with its six domains successively colored in 

rainbow order with the N-terminal domain blue and the C-terminal domain red. 

The other protomer is represented by its identically colored surface diagram. 

The β subunits consist of most of the orange and all of the red domains. The 

protein is viewed with the plasma membrane below and its twofold axis vertical. 

In the intact receptor, a single transmembrane helix connects each β subunit 

to its C-terminal cytoplasmic PTK domain. [Based on an X-ray structure by 

Michael Weiss, Case Western Reserve University; and Michael Lawrence, Walter 

and Eliza Hall Institute of Medical Research, Victoria, Australia. PDBid 3LOH.]
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•  Boxes to highlight topics that link students to areas beyond ba-

sic biochemistry, such as ocean acidifi cation (Box 2-1), production 

of complex molecules via polyketide synthesis (Box 20-3), and the 

intestinal microbiome (Box 22-1).

Biochemistry in Health and Disease essays highlight the im-

portance of biochemistry in the clinic by focusing on the molecular 

mechanisms of diseases and their treatment.

Perspectives in Biochemistry provide enrichment material that 

would otherwise interrupt the fl ow of the text. Instead, the material 

is set aside so that students can appreciate some of the experimental 

methods and practical applications of biochemistry.

Pathways of Discovery profi le pioneers in various fi elds, giving 

students a glimpse of the personalities and scientifi c challenges that 

have shaped modern biochemistry.

•  Caduceus symbols to highlight relevant in-text discussions of medi-

cal, health, or drug-related topics. These include common diseases 

such as diabetes and neurodegenerative diseases as well as lesser 

known topics that reveal interesting aspects of biochemistry.

•  Expanded chapter summaries grouped by major section headings, 

again guiding students to focus on the most important points within 

each section.

•  More to Explore guides consisting of a set of questions at the end 

of each chapter that either extend the material presented in the text or 

prompt students to reach further and discover topics not covered in the 

textbook. In addition, WileyPLUS Learning Space off ers over 1,000 

concept-based questions that can be assigned and automatically grad-

ed, providing students with additional valuable practice opportunities.

• Boldfaced Key terms.

•  List of key terms at the end of each chapter, with the page numbers 

where the terms are fi rst defi ned.

• Comprehensive glossary containing over 1200 terms.

•  List of references for each chapter, selected for their relevance and 

user-friendliness.

Organization
As in the fourth edition, the text begins with two introductory chapters 

that discuss the origin of life, evolution, thermodynamics, the proper-

ties of water, and acid–base chemistry. Nucleotides and nucleic acids 

are covered in Chapter 3, since an understanding of the structures and 

functions of these molecules supports the subsequent study of protein 

evolution and metabolism.

Four chapters (4 through 7) explore amino acid chemistry, methods 

for analyzing protein structure and sequence, secondary through quater-

nary protein structure, protein folding and stability, and structure–function 

relationships in hemoglobin, muscle proteins, and antibodies. Chapter 8 

(Carbohydrates), Chapter 9 (Lipids and Biological Membranes), and 

Chapter 10 (Membrane Transport) round out the coverage of the basic 

molecules of life.

The next three chapters examine proteins in action, introducing stu-

dents fi rst to enzyme mechanisms (Chapter 11), then shepherding them 

through discussions of enzyme kinetics, the eff ects of inhibitors, and 

enzyme regulation (Chapter 12). These themes are continued in Chapter 13, 

which describes the components of signal transduction pathways.

Metabolism is covered in a series of chapters, beginning with an 

 introductory chapter (Chapter 14) that provides an overview of metabolic 

pathways, the thermodynamics of “high-energy” compounds, and  redox 

chemistry. Central metabolic pathways are presented in detail (e.g., gly-

colysis, glycogen metabolism, and the citric acid cycle in Chapters 15–17) 

so that students can appreciate how individual enzymes catalyze reactions 

and work in concert to perform complicated biochemical tasks. Chapters 

18 (Electron Transport and Oxidative Phosphorylation) and 19 (Photosyn-

thesis) complete a sequence that emphasizes energy-acquiring pathways. 

Not all pathways are covered in full detail, particularly those related to 

lipids (Chapter 20), amino acids (Chapter 21), and nucleotides (Chapter 

23). Instead, key enzymatic reactions are highlighted for their interest-

ing chemistry or regulatory importance. Chapter 22, on the integration 

of metabolism, discusses organ specialization and metabolic regulation 

in mammals.

Six chapters describe the biochemistry of nucleic acids, starting 

with their metabolism (Chapter 23) and the structure of DNA and its 

interactions with proteins (Chapter 24). Chapters 25–27 cover the pro-

cesses of DNA replication, transcription, and translation, highlighting 

the functions of the RNA and protein molecules that carry out these 

processes. Chapter 28 deals with a variety of mechanisms for regulating 

gene expression, including the histone code and the roles of transcrip-

tion factors and their relevance to cancer and development.

Additional Support
Student Companion to Fundamentals of 
Biochemistry, 5th Edition

ISBN 978 111 926793 5

This enhanced study resource by Akif Uzman, University of Houston-

Downtown, Jerry Johnson, University of Houston-Downtown, William 

Widger, University of Houston, Joseph Eichberg, University of Houston, 

Donald Voet, Judith Voet, and Charlotte Pratt, is designed to help stu-

dents master basic concepts and hone their analytical skills. Each chap-

ter contains a summary, a review of essential concepts, and additional 

problems. The fi fth edition features Behind the Equations sections and 

Calculation Analogies that provide connections between key equations 

in the text and their applications. The authors have also included new 

categories of questions for the student:

• Graphical analysis questions, which focus on quantitative principles 

and challenge students to apply their knowledge.

• Play It Forward questions that draw specifi cally on knowledge 

 obtained in previous chapters.

The Student Companion contains complete solutions to all of the end of 

chapter problems in the text.

Customize your own course with Wiley 
Custom Select 

Create a textbook with precisely the content you want in a simple, three-

step online process that brings your students a cost-effi  cient alternative to 

a traditional textbook. Select from an extensive collection of content at 

customselect.wiley.com, upload your own materials as well, and select 

from multiple delivery formats— full-color or black-and-white print with 

a variety of binding options, or eBook. Preview the full text online, get 

an instant price quote, and submit your order. We’ll take it from there.
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C H A P T E R  1

1 The Origin of Life
A Biological Molecules Arose from Inanimate 

Substances

B Complex Self-Replicating Systems Evolved from 

Simple Molecules

2 Cellular Architecture
A Cells Carry Out Metabolic Reactions

B There Are Two Types of Cells: Prokaryotes and 

Eukaryotes

C Molecular Data Reveal Three Evolutionary 

Domains of Organisms

D Organisms Continue to Evolve

3 Thermodynamics
A The First Law of Thermodynamics States

 That Energy Is Conserved

B The Second Law of Thermodynamics States

 That Entropy Tends to Increase

C The Free Energy Change Determines the 

Spontaneity of a Process

D Free Energy Changes Can Be Calculated from 

Reactant and Product Concentrations

E Life Achieves Homeostasis While Obeying the 

Laws of Thermodynamics

The structures that make up this Paramecium cell, and the processes that occur within it, can be 

explained in chemical terms. All cells contain similar types of macromolecules and undergo similar 

chemical reactions to acquire energy, grow, communicate, and reproduce.

Chapter Contents

Biochemistry is, literally, the study of the chemistry of life. Although it overlaps 
other disciplines, including cell biology, genetics, immunology, microbiology, 
pharmacology, and physiology, biochemistry is largely concerned with a limited 
number of issues:

1. What are the chemical and three-dimensional structures of biological 
molecules?

2. How do biological molecules interact with one another?

3. How does the cell synthesize and degrade biological molecules?

4. How is energy conserved and used by the cell?

5. What are the mechanisms for organizing biological molecules and coor-
dinating their activities?

6. How is genetic information stored, transmitted, and expressed?

 Biochemistry, like other modern sciences, relies on sophisticated instru-
ments to dissect the architecture and operation of systems that are inaccessible to 
the human senses. In addition to the chemist’s tools for separating, quantifying, 
and otherwise analyzing biological materials, biochemists take advantage of the 
uniquely biological aspects of their subject by examining the evolutionary histo-
ries of organisms, metabolic systems, and individual molecules. In addition to its 
obvious implications for human health, biochemistry reveals the workings of the 
natural world, allowing us to understand and appreciate the unique and mysteri-
ous condition that we call life. In this introductory chapter, we will review some 
aspects of chemistry and biology—including the basics of evolution, the diff er-
ent types of cells, and the elementary principles of thermodynamics—to help put 
biochemistry in context and to introduce some of the themes that recur through-
out this book.

Introduction to 
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Chapter 1 Introduction to the Chemistry of Life

2

1 The Origin of Life
K E Y  C O N C E P T S

• Biological molecules are constructed from a limited number of elements.

• Certain functional groups and linkages characterize different types of biomolecules.

• During chemical evolution, simple compounds condensed to form more complex 

molecules and polymers.

• Self-replicating molecules were subject to natural selection.

Certain biochemical features are common to all organisms: the way hereditary 
information is encoded and expressed, for example, and the way biological mol-
ecules are built and broken down for energy. The underlying genetic and bio-
chemical unity of modern organisms implies that they are descended from a 
single ancestor. Although it is impossible to describe exactly how life fi rst arose, 
paleontological and laboratory studies have provided some insights about the 
origin of life.

A Biological Molecules Arose from Inanimate Substances
Living matter consists of a relatively small number of elements (Table 1-1). For 
example, C, H, O, N, P, Ca, and S account for ∼97% of the dry weight of the 
human body (humans and most other organisms are ∼70% water). Living organ-
isms may also contain trace amounts of many other elements, including B, F, Al, 
Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Mo, Cd, I, and W, although not 
every organism makes use of each of these substances.
 The earliest known fossil evidence of life is ∼3.5 billion years old (Fig. 1-1). 
The preceding prebiotic era, which began with the formation of the earth ∼4.6 
billion years ago, left no direct record, but scientists can experimentally duplicate 
the sorts of chemical reactions that might have given rise to living organisms 
during that billion-year period.
 The atmosphere of the early earth probably consisted of small, simple com-
pounds such as H2O, N2, CO2, and smaller amounts of CH4 and NH3. In the 
1920s, Alexander Oparin and J. B. S. Haldane independently suggested that 
ultraviolet radiation from the sun or lightning discharges caused the molecules of 
the primordial atmosphere to react to form simple organic (carbon-containing) 
compounds. This process was replicated in 1953 by Stanley Miller and Harold 
Urey, who subjected a mixture of H2O, CH4, NH3, and H2 to an electric discharge 
for about a week. The resulting solution contained water-soluble organic com-
pounds, including several amino acids (which are components of proteins) and 
other biochemically signifi cant compounds.
 The assumptions behind the Miller–Urey experiment, principally the com-
position of the gas used as a starting material, have been challenged by some 

FIG. 1-1 Microfossil of f lamentous bacterial cells. This fossil (shown with an interpretive 

drawing) is from ∼3.4-billion-year-old rock from Western Australia.
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TABLE 1-1  Most Abundant Elements 
in the Human Bodya

Element Dry Weight (%)

C 61.7

N 11.0

O 9.3

H 5.7

Ca 5.0

P 3.3

K 1.3

S 1.0

Cl 0.7

Na 0.7

Mg 0.3

aCalculated from Frieden, E., Sci. Am. 227(1), 54–55 

(1972).
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Section 1 The Origin of Lifescientists who have suggested that the fi rst biological molecules were generated 

in a quite diff erent way: in the dark and under water. Hydrothermal vents in the 
ocean fl oor, which emit solutions of metal sulfi des at temperatures as high as 
400°C (Fig. 1-2), may have provided conditions suitable for the formation of 
amino acids and other small organic molecules from simple compounds present 
in seawater.
 Whatever their actual origin, the early organic molecules became the precur-
sors of an enormous variety of biological molecules. These can be classifi ed in 
various ways, depending on their composition and chemical reactivity. A famil-
iarity with organic chemistry is useful for recognizing the functional groups 
(reactive portions) of molecules as well as the linkages (bonding arrangements) 
among them, since these features ultimately determine the biological activity of 
the molecules. Some of the common functional groups and linkages in biological 
molecules are shown in Table 1-2.

B Complex Self-Replicating Systems Evolved 
from Simple Molecules

During a period of chemical evolution, the prebiotic era, simple organic mol-
ecules condensed to form more complex molecules or combined end-to-end 

as polymers of repeating units. In a condensation reaction, the elements of 
water are lost. The rate of condensation of simple compounds to form a stable 
polymer must therefore be greater than the rate of hydrolysis (splitting by adding 
the elements of water; Fig. 1-3). In this prebiotic environment, minerals such as 
clays may have catalyzed polymerization reactions and sequestered the reaction 
products from water. The size and composition of prebiotic macromolecules 
would have been limited by the availability of small molecular starting materials, 
the effi  ciency with which they could be joined, and their resistance to degrada-
tion. The major biological polymers and their individual units (monomers) are 
given in Table 1-3.
 Obviously, combining diff erent monomers and their various functional 
groups into a single large molecule increases the chemical versatility of that 
molecule, allowing it to perform chemical feats beyond the reach of simpler mol-
ecules. (This principle of emergent properties can be expressed as “the whole is 
greater than the sum of its parts.”) Separate macromolecules with complemen-
tary arrangements (reciprocal pairing) of functional groups can associate with 
each other (Fig. 1-4), giving rise to more complex molecular assemblies with an 
even greater range of functional possibilities.
 Specifi c pairing between complementary functional groups permits one 
member of a pair to determine the identity and orientation of the other member. 
Such complementarity makes it possible for a macromolecule to replicate, or copy 
itself, by directing the assembly of a new molecule from smaller complementary 
units. Replication of a simple polymer with intramolecular complementarity is 

FIG. 1-2 A hydrothermal vent. Such ocean-

f oor formations are known as “black smokers” 

because the metal sulf des dissolved in the 

superheated water they emit precipitate on 

encountering the much cooler ocean water.
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FIG. 1-3 Reaction of a carboxylic acid with an amine. The elements of water are released 

during condensation. In the reverse process—hydrolysis—water is added to cleave the amide 

bond. In living systems, condensation reactions are not freely reversible.

Macromolecule

Macromolecule

Amino group

Carboxylate
group

+NH3

C
O O–

FIG. 1-4 Association of complementary 
molecules. The positively charged amino group 

interacts electrostatically with the negatively 

charged carboxylate group.

GATEWAY CONCEPT Functional Groups
Different classes of biological molecules are 

characterized by different types of functional 

groups and linkages. A biological molecule may 

contain multiple functional groups.
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TABLE 1-2 Common Functional Groups and Linkages in Biochemistry

Compound Name Structurea Functional Group or Linkage

Amineb RNH2  or RN
+

H3

  R2NH  or R2N
+

H2 N  or N  (amino group)

  R3N  or R3N
+

H

Alcohol ROH —OH (hydroxyl group)

Thiol RSH —SH (sulfhydryl group)

Ether ROR —O— (ether linkage)

Aldehyde 

O

CR H  

O

C  (carbonyl group)

Ketone 

O

CR R  

O

C  (carbonyl group)

Carboxylic acidb 

O

CR OH or  

O

C OH  (carboxyl group) or

  

O

CR O–
 

O

C O–
 (carboxylate group)

Ester 

O

CR OR  

O

OC  (ester linkage) 

O

CR  (acyl group)c

Thioester 

O

CR SR  

O

C S  (thioester linkage) 

O

CR  (acyl group)c

Amide 

O

CR NH2

  

O

CR NHR N

O

C  (amido group) 

O

CR  (acyl group)c

  

O

CR NR2

Imine (Schiff  base)b R——NH or R——N
+

H2

  R——NR or R——N
+

HR NC  or C N
+

 (imino group)

Disulfi de R—S—S—R —S—S— (disulfi de linkage)

Phosphate esterb

 

O

P

OH

OR O–

 

O

P

OH

O–
 (phosphoryl group)

Diphosphate esterb

 

O

P

O–
O OR

O

P

OH

O–

 

O

P O

O

P

OH

O–

O–

 (phosphoanhydride group)

Phosphate diesterb

 

O

POR R

O–
O

 

O

PO O

O–

 (phosphodiester linkage)

aR represents any carbon-containing group. In a molecule with more than one R group, the groups may be the same or diff erent.
bUnder physiological conditions, these groups are ionized and hence bear a positive or negative charge.
cIf attached to an atom other than carbon.

Cover the Structure column and draw the structure for each compound listed on the left. Do the same for each functional group or linkage.?
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Section 2 Cellular Architecture

illustrated in Fig. 1-5. A similar phenomenon is central to the function of DNA, 
where the sequence of bases on one strand (e.g., A-C-G-T) absolutely specifi es 
the sequence of bases on the strand to which it is paired (T-G-C-A). When 
DNA replicates, the two strands separate and direct the synthesis of comple-
mentary daughter strands. Complementarity is also the basis for transcribing 
DNA into RNA and for translating RNA into protein.
 A critical moment in chemical evolution was the transition from systems of 
randomly generated molecules to systems in which molecules were organized 
and specifi cally replicated. Once macromolecules gained the ability to self-
perpetuate, the primordial environment would have become enriched in molecules 
that were best able to survive and multiply. The fi rst replicating systems were no 
doubt somewhat sloppy, with progeny molecules imperfectly complementary to 
their parents. Over time, natural selection, the competitive process by which 
reproductive preference is given to the better adapted, would have favored mol-
ecules that made more accurate copies of themselves.

TABLE 1-3 Major Biological Polymers and Their Component Monomers

Polymer Monomer

Protein (polypeptide) Amino acid

Nucleic acid (polynucleotide) Nucleotide

Polysaccharide (complex carbohydrate) Monosaccharide (simple carbohydrate)

Polymer Intramolecular
complementarity

Complementary
molecules

FIG. 1–5 Replication through complementarity. In this simple case, a polymer serves as 

a template for the assembly of a complementary molecule, which, because of intramolecular 

complementarity, is an exact copy of the original.

Distinguish the covalent bonds from the noncovalent interactions in this polymer.?

C H E C K P O I N T

• Which four elements occur in virtually all 

biological molecules?

• Summarize the major stages of chemical 

evolution.

• Practice drawing a simple condensation 

and hydrolysis reaction.

• Explain why complementarity would have 

been necessary for the development of 

self-replicating molecules.

2 Cellular Architecture
K E Y  C O N C E P T S

• Compartmentation of cells promotes eff ciency by maintaining high local 

concentrations of reactants.

• Metabolic pathways evolved to synthesize molecules and generate energy.

• The simplest cells are prokaryotes.

• Eukaryotes are characterized by numerous membrane-bounded organelles, 

including a nucleus.

• The phylogenetic tree of life includes three domains: bacteria, archaea, and eukarya.

• Evolution occurs as natural selection acts on randomly occurring genetic variations 

among individuals.



6
Chapter 1 Introduction to the Chemistry of Life The types of systems described so far would have had to compete with all the 

other components of the primordial earth for the available resources. A selective 
advantage would have accrued to a system that was sequestered and protected by 
boundaries of some sort. How these boundaries fi rst arose, or even what they 
were made from, is obscure. One theory is that membranous vesicles (fl uid-fi lled 
sacs) fi rst attached to and then enclosed self-replicating systems. These vesicles 
would have become the fi rst cells.

A Cells Carry Out Metabolic Reactions
The advantages of compartmentation are several. In addition to receiving some 
protection from adverse environmental forces, an enclosed system can maintain 
high local concentrations of components that would otherwise diff use away. 
More concentrated substances can react more readily, leading to increased effi  -
ciency in polymerization and other types of chemical reactions.
 A membrane-bounded compartment that protected its contents would gradu-
ally become quite diff erent in composition from its surroundings. Modern cells 
contain high concentrations of ions, small molecules, and large molecular aggre-
gates that are found only in traces—if at all—outside the cell. For example, a cell 
of the bacterium Escherichia coli (E. coli) contains millions of molecules, rep-
resenting some 3000 to 6000 diff erent compounds (Fig. 1-6). A typical animal 
cell may contain 100,000 diff erent types of molecules.
 Early cells depended on the environment to supply building materials. As 
some of the essential components in the prebiotic soup became scarce, natural 
selection favored organisms that developed metabolic pathways, mechanisms 
for synthesizing the required compounds from simpler but more abundant 
precursors. The fi rst metabolic reactions may have used metal or clay catalysts 
(a catalyst is a substance that promotes a chemical reaction without itself 
undergoing a net change). In fact, metal ions are still at the heart of many 
chemical reactions in modern cells. Some catalysts may also have arisen from 
polymeric molecules that had the appropriate functional groups.
 In general, biosynthetic reactions require energy; hence the fi rst cellular 
reactions also needed an energy source. The eventual depletion of preexisting 
energy-rich substances in the prebiotic environment would have favored the 
development of energy-producing metabolic pathways. For example, photosyn-
thesis evolved relatively early to take advantage of a practically inexhaustible 
energy supply, the sun. However, the accumulation of O2 generated from H2O 

FIG. 1-6 Cross-section through an E. coli cell. 
The cytoplasm is packed with macromolecules. 

At this magnif cation (∼1,000,000×), individual 

atoms are too small to resolve. The green 

structures on the right include the inner and outer 

membrane components along with a portion of 

a f agellum. Inside the cell, various proteins are 

shown in blue, and ribosomes are purple. The 

gold and orange structures represent DNA and 

DNA-binding proteins, respectively. In a living 

cell, the remaining spaces would be crowded with 

water and small molecules. [From Goodsell, D.S., 

The Machinery of Life (2nd ed.), Springer (2009). 

Reproduced with permission.]
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Section 2 Cellular Architectureby photosynthesis (the modern atmosphere is 21% O2) presented an additional 

challenge to organisms adapted to life in an oxygen-poor atmosphere. Metabolic 
refi nements eventually permitted organisms not only to avoid oxidative damage 
but also to use O2 for oxidative metabolism, a much more effi  cient form of 
energy metabolism than anaerobic metabolism. Vestiges of ancient life can be 
seen in the anaerobic metabolism of certain modern organisms.
 Early organisms that developed metabolic strategies to synthesize biological 
molecules, conserve and utilize energy in a controlled fashion, and replicate 
within a protective compartment were able to propagate in an ever-widening 
range of habitats. Adaptation of cells to diff erent external conditions ultimately 
led to the present diversity of species. Specialization of individual cells also 
made it possible for groups of diff erentiated cells to work together in multicel-
lular organisms.

B There Are Two Types of Cells: Prokaryotes and Eukaryotes
All modern organisms are based on the same morphological unit, the cell. 
There are two major classifi cations of cells: the eukaryotes (Greek: eu, good or 
true + karyon, kernel or nut), which have a membrane-enclosed nucleus encap-
sulating their DNA; and the prokaryotes (Greek: pro, before), which lack a 
nucleus. Prokaryotes, comprising the various types of bacteria, have relatively 
simple structures and are almost all unicellular (although they may form fi la-
ments or colonies of independent cells). Eukaryotes, which are multicellular as 
well as unicellular, are vastly more complex than prokaryotes. (Viruses are 
much simpler entities than cells and are not classifi ed as living because they lack 
the metabolic apparatus to reproduce outside their host cells.)
 Prokaryotes are the most numerous and widespread organisms on the earth. 
This is because their varied and often highly adaptable metabolisms suit them to 
an enormous variety of habitats. Prokaryotes range in size from 1 to 10 μm and 
have one of three basic shapes (Fig. 1-7): spheroidal (cocci), rodlike (bacilli), and 
helically coiled (spirilla). Except for an outer cell membrane, which in most cases 
is surrounded by a protective cell wall, nearly all prokaryotes lack cellular mem-
branes. However, the prokaryotic cytoplasm (cell contents) is by no means a 
homogeneous soup. Diff erent metabolic functions are carried out in diff erent 
regions of the cytoplasm (Fig. 1-6). The best characterized prokaryote is Esche-
richia coli, a 2 μm by 1 μm rodlike bacterium that inhabits the mammalian colon.

Spirillum

A spirochete

Anabaena (a cyanobacterium)

Large Bacillus

Escherichia coli

Staphylococcus

Rickettsia Three species of
Mycoplasma

10 μm
FIG. 1-7 Scale drawings of some 
prokaryotic cells.
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 Eukaryotic cells are generally 10 to 100 μm in diameter and thus have a 
thousand to a million times the volume of typical prokaryotes. It is not size, how-
ever, but a profusion of membrane-enclosed organelles that best characterizes 
eukaryotic cells (Fig. 1-8). In addition to a nucleus, eukaryotes have an endo-
plasmic reticulum, the site of synthesis of many cellular components, some of 
which are subsequently modifi ed in the Golgi apparatus. The bulk of aerobic 
metabolism takes place in mitochondria in almost all eukaryotes, and photosyn-
thetic cells contain chloroplasts, which convert the energy of the sun’s rays to 
chemical energy. Other organelles, such as lysosomes and peroxisomes, perform 
specialized functions. Vacuoles, which are more prominent in plant than in ani-
mal cells, usually function as storage depots. The cytosol (the cytoplasm minus 
its membrane-bounded organelles) is organized by the cytoskeleton, an exten-
sive array of fi laments that also gives the cell its shape and the ability to move.
 The various organelles that compartmentalize eukaryotic cells represent a 
level of complexity that is largely lacking in prokaryotic cells. Nevertheless, pro-
karyotes are more effi  cient than eukaryotes in many respects. Prokaryotes have 
exploited the advantages of simplicity and miniaturization. Their rapid growth 
rates permit them to occupy ecological niches in which there may be drastic fl uc-
tuations of the available nutrients. In contrast, the complexity of eukaryotes, which 
renders them larger and more slowly growing than prokaryotes, gives them the 
competitive advantage in stable environments with limited resources. It is therefore 
erroneous to consider prokaryotes as evolutionarily primitive compared to eukary-
otes. Both types of organisms are well adapted to their respective lifestyles.

Nucleus

Nuclear 
membrane

Nucleolus

Rough endoplasmic reticulum
Chromatin

Smooth endoplasmic reticulum

Mitochondrion

Golgi apparatus

Lysosome

Centrioles

Vacuole

Free ribosomes

Cell membrane

Ribosomes bound
to RER

FIG. 1-8 Diagram of a typical animal cell with electron 
micrographs of its organelles. Membrane-bounded organelles include 

the nucleus, endoplasmic reticulum, lysosome, peroxisome (not 

pictured), mitochondrion, vacuole, and Golgi apparatus. The nucleus 

contains chromatin (a complex of DNA and protein) and the nucleolus 

(the site of ribosome synthesis). The rough endoplasmic reticulum is 

studded with ribosomes; the smooth endoplasmic reticulum is not. 

A pair of centrioles help organize cytoskeletal elements. A typical 

plant cell differs mainly by the presence of an outer cell wall and 

chloroplasts in the cytosol. [Smooth endoplasmic reticulum © Dennis 

Kunkel Microscopy, Inc./Phototake; rough endoplasmic reticulum 

© Pietro M. Motta & Tomonori Naguro/Photo Researchers, Inc.; nucleus 

© Tektoff-RM, CNRI/Photo Researchers; mitochondrion © CNRI/Photo 

Researchers; Golgi apparatus © Secchi-Lecaque/Roussel-UCLAF/ 

CNRI/Photo Researchers; lysosome © Biophoto Associates/Photo 

Researchers.]

With the labels covered, name the parts of this eukaryotic cell.?
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Section 2 Cellular ArchitectureC Molecular Data Reveal Three Evolutionary 

Domains of Organisms
The practice of lumping all prokaryotes in a single category based on what 
they lack—a nucleus—obscures their metabolic diversity and evolutionary 

history. Conversely, the remarkable morphological diversity of eukaryotic 
organisms (consider the anatomical diff erences among, say, an amoeba, an oak 
tree, and a human being) masks their fundamental similarity at the cellular level. 
Traditional taxonomic schemes (taxonomy is the science of biological classifi ca-
tion), which are based on gross morphology, have proved inadequate to describe 
the actual relationships between organisms as revealed by their evolutionary his-
tory (phylogeny).
 Biological classifi cation schemes based on reproductive or developmental 
strategies more accurately refl ect evolutionary history than those based solely on 
adult morphology. However, phylogenetic relationships are best deduced by 
comparing polymeric molecules—RNA, DNA, or protein—from diff erent organ-
isms. For example, analysis of RNA led Carl Woese to group all organisms into 
three domains (Fig. 1-9). The archaea (also known as archaebacteria) are a 
group of prokaryotes that are as distantly related to other prokaryotes (the 
bacteria, sometimes called eubacteria) as both groups are to eukaryotes 
(eukarya). The archaea include some unusual organisms: the methanogens 
(which produce CH4), the halobacteria (which thrive in concentrated brine solu-
tions), and certain thermophiles (which inhabit hot springs). The pattern of 
branches in Woese’s diagram indicates the divergence of diff erent types of organ-
isms (each branch point represents a common ancestor). The three-domain 
scheme also shows that animals, plants, and fungi constitute only a small portion 
of all life-forms. Such phylogenetic trees supplement the fossil record, which 
provides a patchy record of life prior to about 600 million years before the pres-
ent (multicellular organisms arose about 700–900 million years ago).
 It is unlikely that eukaryotes are descended from a single prokaryote, because 
the diff erences among eubacteria, archaea, and eukaryotes are so profound. 
Instead, eukaryotes probably evolved from the association of archaebacterial and 
eubacterial cells. The eukaryotic genetic material includes features that suggest 
an archaebacterial origin. In addition, the mitochondria and chloroplasts of mod-
ern eukaryotic cells resemble eubacteria in size and shape, and both types of 
organelles contain their own genetic material and protein synthetic machinery. 
Evidently, as Lynn Margulis proposed, mitochondria and chloroplasts evolved 
from free-living eubacteria that formed symbiotic (mutually benefi cial) relation-
ships with a primordial eukaryotic cell (Box 1-1). In fact, certain eukaryotes that 
lack mitochondria or chloroplasts permanently harbor symbiotic bacteria.

FIG. 1-9 Phylogenetic tree showing the three 
domains of organisms. The branches indicate 

the pattern of divergence from a common ancestor. 

The archaea are prokaryotes, like eubacteria, but 

share many features with eukaryotes. [After 

Wheelis, M.L., Kandler, O., and Woese, C.R., 

Proc. Natl. Acad. Sci. 89, 2931 (1992).]
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